این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Numerical Analysis and Optimization، جلد ۱۱، شماره ۲، صفحات ۳۰۵-۳۳۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی The strict complementarity in linear fractional optimization
چکیده انگلیسی مقاله As an important duality result in linear optimization, the Goldman–Tucker theorem establishes strict complementarity between a pair of primal and dual linear programs. Our study extends this result into the framework of linear fractional optimization. Associated with a linear fractional program, a dual program can be defined as the dual of the equivalent linear program obtained from applying the Charnes–Cooper transformation to the given program. Based on this definition, we propose new criteria for primal and dual optimality by showing that the primal and dual optimal sets can be equivalently modeled as the optimal sets of a pair of primal and dual linear programs. Then, we define the concept of strict complementarity and establish the existence of at least one, called strict complementary, pair of primal and dual optimal solutions such that in every pair of comple mentary variables, exactly one variable is positive and the other is zero. We geometrically interpret the strict complementarity in terms of the relative interiors of two sets that represent the primal and dual optimal setsin higher dimensions. Finally, using this interpretation, we develop two approaches for finding a strict complementary solution in linear fractional optimization. We illustrate our results with two numerical examples. 
کلیدواژه‌های انگلیسی مقاله Linear fractional optimization, Charnes–Cooper transformation, Duality, Strict complementarity

نویسندگان مقاله M. Mehdiloo |
Department of Mathematics and Applications, University of Mohaghegh Ardabili, Ardabil, Iran.

K. Tone |
National Graduate Institute for Policy Studies, Tokyo, Japan.

M.B. Ahmadi |
Department of Mathematics, College of Sciences, Shiraz University, Shiraz, Iran.


نشانی اینترنتی https://ijnao.um.ac.ir/article_40153_00b472fc336b9017e4bd85ab7de7c022.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات