|
مهندسی عمران مدرس، جلد ۲۱، شماره ۴، صفحات ۷۵-۸۸
|
|
|
عنوان فارسی |
مدل هیبریدی فراکاوشی یادگیری ماشینی تخمین سطح آب زیرزمینی |
|
چکیده فارسی مقاله |
آب چاه به عنوان منبع محدود طبیعی تامین آب، نقش حیاتی در مناطق خشک و نیمه خشک ایفا میکند. در سالهای اخیر با توجه به مشکل کمبود منابع آبی، مساله استفاده و مدیریت بهینه از اهمیت ویژه ای برخوردار است. به منظور آگاهی از وضعیت این منابع و مدیریت بهینه آن، پیش بینی نوسانات سطح آب چاه لازم است. مدلهای دقیق و قابل اطمینان پیش بینی سطح آب چاهها میتوانند به استفاده پایدار از آب زیرزمینی به منظور تامین نیاز های شهری، کشاورزی و صنعتی کمک کنند. مدلهای عددی نیازمند پارامترهای زیاد، زمان بر و پرهزینه هستند، لذا در سالهای اخیر توجه خاصی به مدل هوشمند شده است. در این پژوهش مدل حداقل مربعات ماشین بردار پشتیبان وزن دار (WLS-SVM) با دقیق ترین تابع وزنی Myriad با الگوریتمهای فراکاوشی جامعه پرندگان (PSO) و گرانشی (GSA) ترکیب شده است و این دو مدل هیبریدی (WLSSVM-PSO) و (WLSSVM-GSA) به عنوان روشهای محاسباتی هوشمند جدید به منظور تخمین سطح آب زیرزمینی ارائه شده است. به منظور تخمین سطح آب زیرزمینی از دادههای ده چاه مشاهداتی در دشت باغین استان کرمان، دارای آمار تراز سطح ایستابی با سری زمانی ده ساله استفاده شده است. مقادیر تخمین زده شده از دو مدل هیبریدی با مقادیر مشاهده ای تراز سطح ایستابی مقایسه گردید و عملکرد این مدلها با شاخصهای آماری ارزیابی شده است. نتایج نشان داد که مدلهای هیبریدی WLSSVM-PSO و WLSSVM-GSA دارای دقت بسیار خوبی برای تخمین سطح آب زیرزمینی میباشد، اما مدل WLSSVM-GSA نسبت به مدل WLSSVM-PSO کمی با دقت بالاتر عمل کرده است. بنابراین این مطالعه نشان میدهد که میتوان از این مدلهای هیبریدی ارائه شده به عنوان ابزاری کارآمد در تخمین سطح آب زیرزمینی استفاده نمود. آب چاه به عنوان منبع محدود طبیعی تامین آب، نقش حیاتی در مناطق خشک و نیمه خشک ایفا میکند. در سالهای اخیر با توجه به مشکل کمبود منابع آبی، مساله استفاده و مدیریت بهینه از اهمیت ویژه ای برخوردار است. به منظور آگاهی از وضعیت این منابع و مدیریت بهینه آن، پیش بینی نوسانات سطح آب چاه لازم است. مدلهای دقیق و قابل اطمینان پیش بینی سطح آب چاهها میتوانند به استفاده پایدار از آب زیرزمینی به منظور تامین نیاز های شهری، کشاورزی و صنعتی کمک کنند. مدلهای عددی نیازمند پارامترهای زیاد، زمان بر و پرهزینه هستند، لذا در سالهای اخیر توجه خاصی به مدل هوشمند شده است. در این پژوهش مدل حداقل مربعات ماشین بردار پشتیبان وزن دار (WLS-SVM) با دقیق ترین تابع وزنی Myriad با الگوریتمهای فراکاوشی جامعه پرندگان (PSO) و گرانشی (GSA) ترکیب شده است و این دو مدل هیبریدی (WLSSVM-PSO) و (WLSSVM-GSA) به عنوان روشهای محاسباتی هوشمند جدید به منظور تخمین سطح آب زیرزمینی ارائه شده است. به منظور تخمین سطح آب زیرزمینی از دادههای ده چاه مشاهداتی در دشت باغین استان کرمان، دارای آمار تراز سطح ایستابی با سری زمانی ده ساله استفاده شده است. مقادیر تخمین زده شده از دو مدل هیبریدی با مقادیر مشاهده ای تراز سطح ایستابی مقایسه گردید و عملکرد این مدلها با شاخصهای آماری ارزیابی شده است. نتایج نشان داد که مدلهای هیبریدی WLSSVM-PSO و WLSSVM-GSA دارای دقت بسیار خوبی برای تخمین سطح آب زیرزمینی میباشد، اما مدل WLSSVM-GSA نسبت به مدل WLSSVM-PSO کمی با دقت بالاتر عمل کرده است. بنابراین این مطالعه نشان میدهد که میتوان از این مدلهای هیبریدی ارائه شده به عنوان ابزاری کارآمد در تخمین سطح آب زیرزمینی استفاده نمود. |
|
کلیدواژههای فارسی مقاله |
،سطح آب چاه،مدل هیبریدی هوشمند،حداقل مربعات ماشین بردار پشتیبان وزن دار،الگوریتم فراکاوشی |
|
عنوان انگلیسی |
Hybrid Learning Machine Metaheuristic Model for Estimating Groundwater Level Level |
|
چکیده انگلیسی مقاله |
Groundwater is the most reliable source of supply for potable water and supports a wide array of economic and environmental services. There is a significant concern that groundwater levels are declining due to intense aquifer use. The sustainable management of groundwater resources requires good planning and concerted efforts. To manage groundwater resources, it is necessary to predict the groundwater levels and its fluctuations. The prediction groundwater level can guide water managers and engineers effectively. On the other hand, there are multifarious types of equipment for measuring levels of groundwater. Sophisticated water level loggers or divers can measure the groundwater level automatically. Sounding devices with acoustic and light signals are also used to check groundwater levels. The use of devices for measuring the level of groundwater is time-consuming and costly. To reduce the time and cost of the groundwater level measuring process, many methods of Artificial Intelligence (AI) have been utilized for estimating the groundwater level. Among the AI methods, SVMs has great ability in predicting non-linear hydrological processes. Support vector machines (SVMs) is as an intelligent computational method for predicting hydrological processes. Recently, (SVMs) have been successfully applied in classification problems, regression and predicting; as techniques of machine learning, statistics and mathematical analysis. The SVM is based on the structural risk minimization (SRM), which can escape from various difficulties, such as the necessity of a large number of control parameters and a local minimum in artificial neural networks (ANNs). The weighted least squares support vector machines (WLSSVM) was first introduced by Suykens et al., and has proved to be much more robust in several fields, especially for noise mixed data, than least squares version of SVM (LSSVM). Their powerful scientific research provides motivation for employing WLSSVM method in estimating groundwater level. The accurate value of WLSSVM parameters effect on the estimation, these optimal parameters can be achieved optimization algorithms. Therefore, weighted least square support vector machine (WLS-SVM) model was coupled with particle swarm optimization (PSO) and gravitational search algorithm (GSA) as metaheuristic algorithms for estimating well water level. In this study, an attempt has been made to use the hybrid model with high accuracy to estimate the groundwater level. In order to estimate the groundwater level, ten wells data in Bagheyn plain of Kerman province is considered during ten-year time series. The estimated value obtained by the WLSSVM-PSO and WLSSVM-GSA models are compared with the observed value, and showed the estimated results have nearly coincidence with observed values. Numerical results show the merits of the suggested technique for groundwater level simulation. In order to verify the hybrid learning machine metaheuristic model, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Average Absolute Error (AAE), and Model Efficiency (EF) are computed, and these statistical indicators stand on the good acceptable range, and find WLSSVM-GSA is more accurate than WLSSVM-PSO. The results demonstrate that the new hybrid WLSSVM-GSA model has high efficiency and accuracy with observed values, and the modelling method is an innovative and powerful idea in estimating well water level. |
|
کلیدواژههای انگلیسی مقاله |
Groundwater level –Weighted least square support vector machine – Particle swarm optimization– Gravitational search algorithm-Efficiency. |
|
نویسندگان مقاله |
شیوا خسروی | Shiva khosravi Islamic Azad University, Kerman branch دانشگاه آزاد اسلامی واحد کرمان
امیر رباطی | Amir Robati Islamic Azad University Kerman Branch دانشگاه آزاد اسلامی واحد کرمان
|
|
نشانی اینترنتی |
http://mcej.modares.ac.ir/browse.php?a_code=A-10-59857-1&slc_lang=fa&sid=16 |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
fa |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
پژوهشی اصیل (کامل) |
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|