این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 28 بهمن 1404
International Journal of Industrial Engineering and Productional Research-
، جلد ۳۲، شماره ۴، صفحات ۱-۱۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A Comparative Study on a Triple-Concept Model of Two Techniques for Monitoring the Mean of Stationary Processes
چکیده انگلیسی مقاله
In recent years, it has been proven that integrating statistical process control, maintenance policy, and production can bring more benefits for the entire production systems. In the literature of triple-concept integrated models, it has generally been assumed that the observations are independent. However, the existence of correlated structures in some practical applications put the traditional control charts in trouble. The mixed EWMA-CUSUM (MEC) control chart and the ARMA control chart are effective tools to monitor the mean of autocorrelated processes. This paper proposes an integrated model subject to some constraints for determining the decision variables of triple concepts in the presence of autocorrelated data. Three types of autocorrelated processes are investigated to study their effects on the results. Moreover, the results of the MEC and ARMA charts are compared. Due to the complexity of the model, a particle swarm optimization (PSO) algorithm is applied to select optimal decision variables. An industrial example and extensive comparisons are provided
کلیدواژههای انگلیسی مقاله
Statistical process control,Production,Maintenance policy,Autocorrelated process,Meta-heuristic algorithm
نویسندگان مقاله
| Samrad Jafarian-Namin
Department of Industrial Engineering, Faculty of Engineering, Yazd University
| mohammad saber Fallahnezhad
Department of Industrial Engineering, Faculty of Engineering, Yazd University
| Reza Tavakkoli-Moghaddam
School of Industrial Engineering, College of Engineering, University of Tehran
| Ali Salmasnia
Department of Industrial Engineering, Faculty of Technology and Engineering, University of Qom
| Mohammad Hossein Abooei
Department of Industrial Engineering, Faculty of Engineering, Yazd University
نشانی اینترنتی
http://ijiepr.iust.ac.ir/browse.php?a_code=A-10-269-10&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
Statistical Process Control Statistical Process Control or Quality Control
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات