این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 شهریور 1404
Caspian Journal of Enviromental Sciences
، جلد ۱۹، شماره ۱، صفحات ۹۵-۱۰۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Comparison of temporal and spatial patterns of water quality parameters in Anzali Wetland (southwest of the Caspian Sea) using Support vector machine model
چکیده انگلیسی مقاله
Urgent is growing to have reliable information from the country's water resources. In recent years, data mining models such as artificial neural network (ANN), gene expression programming, Bayesian network, machine algorithms, such as a support vector machine (SVM), and Random Forest have found widespread use in the field of simulation and prediction of components in aquatic ecosystems. Variables vary greatly on water quality parameters (due to nonlinear and complex relationships). Therefore, conventional methods are not eligible to solve water resource quality management problems. The aim of this study was to investigate the possibility of simulating the spatial and temporal alterations in water quality parameters during the period 1985-2014 in Anzali Wetland using a SVM model. Based on principal components analysis (PCA), the parameters EC, TDS, pH and BOD5 were selected for analysis in this study. Spearman correlation was calculated to determine the inputs of the model and the correlation coefficient(CC) between the water quality parameters. According to the results of the correlation table analysis, 8 types of structures including different inputs were used to predict the parameters with machine vector. In the next stage, 70% of the data were used to train, while the rest were used for analyzing the models. Criteria for determination coefficient (R2) and root mean square error (RMSE) were used for evaluation and model performance. The results revealed that in verification stage among different used models, the pH had the highest accuracy (0.95), while the lowest RMSE (0.20). Trend of alterations for optimal model of each parameter on a time scale, indicated an adequate estimation at most points. In general, the results exhibited the appropriate accuracy and acceptable performance of the SVM model in simulating water parameters.
کلیدواژههای انگلیسی مقاله
Machine algorithms, PCA, RMSE, Simulation, Wetland
نویسندگان مقاله
Maryam Fallah |
Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
Ahmad Reza Pirali Zefrehei |
Department of Aquatics Production and Exploitation, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Seyyed Aliakbar Hedayati |
Department of Aquatics Production and Exploitation, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Tahereh Bagheri |
Agricultural Research Education and Extension Organization, Iranian Fisheries Science Research Institute, Offshore Research Center, Tehran, Iran
نشانی اینترنتی
https://cjes.guilan.ac.ir/article_4500_55edcf5ea93da85e70791348001fab4d.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات