این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Biostatistics and Epidemiology، جلد ۵، شماره ۳، صفحات ۱۸۳-۱۹۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A New Application of Louvain Algorithm for Identifying Disease Fields Using Big Data Techniques
چکیده انگلیسی مقاله Background and aim: Recently, the use of data science techniques in healthcare has been increased remarkably. Community detection as one the important methods of data science is utilized in the health domain. Methods: This paper detects disease areas based on combination of big data and graph mining methods on drug prescriptions. At first, network of prescription is designed, and Louvain algorithm is applied for community detection of 50000 Iranian prescriptions in 2014 gathered from the Iranian Health Insurance Organization. We use modularity metric for validation of the results and the experts’ opinion as the external validation of communities. Results: The outputs are consist of six communities. These communities are labeled based on experts’ opinion that present the disease fields. Conclusion: The Louvain algorithm has the ability to detect the major communities of the prescription database with an acceptable accuracy. We have proven that these communities present the disease fields.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله | Saeed Shirazi
MSc, Department of Information Technology, Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran


| Hamed Baziyad
MSc, Department of Information Technology, Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran


| Naser Ahmadi
MSc, Department of Biostatistics, Faculty of Paramedical Science, Shahid beheshti University of medical Science, Tehran, Iran


| Amir Albadvi
Professor, Department of Information Technology, Faculty of Industrial and Systems Engineering, Tehran, Iran



نشانی اینترنتی http://jbe.tums.ac.ir/index.php/jbe/article/view/292
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/362/article-362-2446201.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات