این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 1 آبان 1404
تحقیقات حسابداری و حسابرسی
، جلد ۴، شماره ۱۶، صفحات ۱۲۰-۱۳۵
عنوان فارسی
تدوین الگوهای پیشبینی کننده بحران مالی با استفاده از تجزیه و تحلیل درونی داده ها و تکنیک های هوش مصنوعی
چکیده فارسی مقاله
یکی از ابزارهای تصمیمگیری استفاده کنندگان برون سازمانی از قبیل سرمایهگذاران، اعتباردهندگان، شرکتهای تجاری و همچنین موسسات دولتی تصمیمگیری در خصوص سرمایهگذاری، اعطای اعتبار و ... تجزیه و تحلیل صورتهای مالی شرکتها میباشد. با توجه به پیشرفت سریع فناوری و تکنولوژیهای کامپیوتری میتوان اطلاعات دقیقتری نسبت به اطلاعات سنتی در اختیار تصمیمگیرندگان قرار داد. تا بتوانند تصمیمگیریهای مناسبتری را در خصوص احتمال برگشت سرمایه و یا وقوع بحران مالی قبل از وقوع و تحمل هزینههای سنگین اتخاذ نمایند. هدف این تحقیق تدوین مدلهای پیشبینی کننده بحران مالی برای شرکتهای پذیرفته شده در بورس اوراق بهادار تهران با استفاده از نسبتهای مالی و تکنیکهای هوش مصنوعی میباشد. از این رو اطلاعات مالی مربوط به دوره زمانی 1370 الی 1388 جمعآوری و نسبت های مالی مورد نظر استخراج و الگوهای شبکه عصبی ANN، ترکیب آنالیز مولفههای اصلی و شبکه عصبی PCA+ANN برای پیشبینی بحران مالی یک، دو و سه سال قبل از وقوع آن تدوین شده است. سپس با توجه به نتایج بدست آمده، الگوها با یکدیگر مقایسه و بهترین الگو استخراج شده است. با توجه به نتایج آزمون مشخص گردید الگوی شبکه عصبی با استفاده از اطلاعات یک سال قبل از وقوع نسبت به سایر تکنیکهای این پژوهش و سایر سالهای مالی دارای کارایی بیشتری در پیشبینی بحران مالی شرکتها میباشد.
کلیدواژههای فارسی مقاله
بحران مالی، متغیرهای مالی، آنالیز مولفههای اصلی، شبکه های عصبی،
عنوان انگلیسی
The compilation of predicting patterns of financial distress using internal analysis data and artificial intelligent techniques’’
چکیده انگلیسی مقاله
One of external user’s decision making tools such as investors, creditors, trade companies and state organization is decision making about investment, crediting…, and financial statement analysis of the companies. Respecting rapid development of computer technology and techniques, more exact information can be provided for decision maker’s than traditional information in order to be able to make more efficient decisions about probable of return on investment and/or financial distress occurrence before occurring and suffering the high expenses. The aim of this study is to make a financial distress predicting model for listed companies’ in Tehran stock exchange using financial proportions and artificial intelligent techniques. So financial information relevant to time period 2001 to 2009 is compiled and expected financial proportions’ are extracted and neural network patterns (ANN), principal component analysis combination, and neural network PCA +ANN have been compiled to predict the financial distress one or more years before the occurring. Then according to obtained results, These patterns have been compared and the best pattern has been chosen .In accordance with the results, It is distinguished that the neural net work using the information One year before financial distress occurring has more efficiency in predicting the financial distress of the companies rather than other techniques in this research and other financial years.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
زهرا پورزمانی |
استادیار، دانشگاه آزاد اسلامی، واحد تهران مرکزی
نشانی اینترنتی
http://www.iaaaar.com/article_104585_84cbc0e2fa3469d965195f87b7621e74.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/696/article-696-2318882.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات