Journal of Chemical and Petroleum Engineering، جلد ۵۳، شماره ۲، صفحات ۱۹۱-۲۰۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent
چکیده انگلیسی مقاله In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (SA), temperature (T), and pressure (P) were related to the output parameter which is propylene or propane adsorption. A thorough comparison between the experimental, artificial neural network and particle swarm optimization-adaptive neuro-fuzzy inference system models was carried out to prove its efficiency in accurate prediction and computation time. The obtained results show that both investigated methods have good agreements in comparison with the experimental data, but the proposed artificial neural network structure is more precise than our proposed PSO-ANFIS structure. Mean absolute error (MAE) for ANN and ANFIS models were 0.111 and 0.421, respectively.
کلیدواژه‌های انگلیسی مقاله Adsorption, ANN, Cu-BTC, Propylene/Propane, PSO-ANFIS

نویسندگان مقاله Sohrab Fathi |
Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran

Abbas Rezaei |
Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran

Majid Mohadesi |
Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran

Mona Nazari |
Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran


نشانی اینترنتی https://jchpe.ut.ac.ir/article_72487_9072cfbb693845980dbef5eaa99ba3c8.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/482/article-482-2169160.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات