|
International Journal of Engineering، جلد ۳۲، شماره ۷، صفحات ۹۳۱-۹۳۹
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Convolutional Gating Network for Object Tracking |
|
چکیده انگلیسی مقاله |
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutional neural networks (CNNs), which allows the proposed method to learn the features with high discriminative power and geometrical independence. In the training phase, the CNNs are first pre-trained in each of the camera views, and a convolutional gating network (CGN) is simultaneously pre-trained to produce a weight for each CNN output. The CNNs are then transferred to the tracking task where the pre-trained parameters of the CNNs are re-trained by using the data from the tracking phase. The weights obtained from the CGN are used in order to fuse the features learnt by the CNNs and the resulting weighted combination of the features is employed to represent the objects. Finally, the particle filter is used in order to track objects. The experimental results showed the efficiency of the proposed method in this paper. |
|
کلیدواژههای انگلیسی مقاله |
|
|
نویسندگان مقاله |
A. Feizi | Faculty of Electrical Engineering, Damghan University, Damghan, Semnan, Iran
|
|
نشانی اینترنتی |
http://www.ije.ir/article_87123_97e73a696cb75dc070dd2dced8875f7d.pdf |
فایل مقاله |
اشکال در دسترسی به فایل - ./files/site1/rds_journals/409/article-409-2061556.pdf |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
|
نوع مقاله منتشر شده |
|
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|