Journal of Rehabilitation in Civil Engineerin، جلد ۷، شماره ۲، صفحات ۱-۱۸

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Evaluating Seepage of Dam Body Using RBF and GFF Models of Artificial Neural Network
چکیده انگلیسی مقاله Dams have been always considered as the important infrastructures and their critical values are counted. Hence, evaluation and avoidance of dams' destruction have a specific importance. Seepage occurrence in dams is an inevitable phenomenon. Despite all the progress in geotechnical engineering, up to now, seepage problem is the main conflict which occurs in dams. This study tried to estimate seepage of the embankment of "Boukan Shahid Kazemi's dam" using RBF and GFF models of artificial neural network. To achieve this goal, the piezometric data set including 864 data were used. 70 percent of current data was used for training the network and 10 percent for calibration of two models. So 20% remained data was used for testing the network. Using suitable and applicable statistical parameters indicated that the RBF model with Levenberg Marquardt training and 4 hidden layers has high potential in estimating seepage, also the correlation coefficient for this model is 0.81 and the root mean square error was obtained 33.12%.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله Somayeh Emami |
Tabriz university

Yahya Choopan |
Water Engineering Department of Gorgan

Javad Parsa |
Water Engineering Department of Tabriz


نشانی اینترنتی http://civiljournal.semnan.ac.ir/article_3016_df1fea9254c792dfc2a45d979b953467.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/509/article-509-1123778.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات